Factorization in quantum field theory: an exercise in Hopf algebras and local singularities
نویسنده
چکیده
I discuss the role of Hochschild cohomology in Quantum Field Theory with particular emphasis on Dyson–Schwinger equations.
منابع مشابه
Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملRota–baxter Algebras in Renormalization of Perturbative Quantum Field Theory
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota–Baxter algebras enters the scene. In this note we revi...
متن کاملN ov 2 00 3 Symmetric Coalgebras
We construct a structure of a ring with local units on a co-Frobenius coalgebra. We study a special class of co-Frobenius coalgebras whose objects we call symmetric coalgebras. We prove that any semiperfect coalgebra can be embedded in a symmetric coalgebra. A dual version of Brauer's equivalence theorem is presented, allowing a characterization of symmetric coalgebras by comparing certain func...
متن کاملStructures in Feynman Graphs - Hopf Algebras and Symmetries
We review the combinatorial structure of perturbative quantum field theory with emphasis given to the decomposition of graphs into primitive ones. The consequences in terms of unique factorization of Dyson– Schwinger equations into Euler products are discussed.
متن کاملSpitzer’s Identity and the Algebraic Birkhoff Decomposition in pQFT
In this article we continue to explore the notion of Rota-Baxter algebras in the context of the Hopf algebraic approach to renormalization theory in perturbative quantum field theory. We show in very simple algebraic terms that the solutions of the recursively defined formulae for the Birkhoff factorization of regularized Hopf algebra characters, i.e. Feynman rules, naturally give a non-commuta...
متن کامل